1. Kutsayeva, A. Сreation of management zones for the purposes of land development at the implementation of precision farming in Belarus / А. Kutsayeva, T. Myslyva // Baltic Surveying. – 2020. – Vol. 12. – P. 19–27. https://doi.org/10.22616/j.balticsurveying.2020.003
2. Daheim, C. Precision agriculture and the future of farming in Europe : scientific foresight study / C. Daheim, K. Poppe, R. Schrijver ; Europ. Parliament. – Brussels : EU, 2016. – 274 p. https://doi.org/10.2861/020809
3. Doerge, Т.А. Management zone concepts. Site-specific management guidelines, no. 2 / T.A. Doerge. – Canada : IPNI, 1999. – 4 p.
4. Куцаева О.А. Создание менеджмент-зон для дифференцированного внесения минеральных удобрений с использованием инструментов геостатистики / О.А. Куцаева // Вестн. Белорус. гос. с.-х. акад. – 2020. – №2. – С. 176–181.
5. Zarco-Tejada, P. J. Precision agriculture: an opportunity for EU farmers – potential support with the cap 2014–2020 / P.J. Zarco-Tejada, N. Hubbard, P. Loudjani ; Europ. Parliament, Directorate-General for Internal Policies of the Union. – Luxembourg : Publ. Office, 2014. – 50 p. https://doi.org/10.2861/58758
6. Maloku, D. Adoption of precision farming technologies: USA and EU situation / D. Maloku // SEA – Practical Application of Science. – 2020. – Vol. VIII, iss. 22. – P. 7–14.
7. Бауэрс, П. Летательные аппараты нетрадиционных схем / П. Бауэрс ; пер. с англ. Б.Б. Рыбака ; под ред. Е.В. Зябрева. – М. : Мир, 2016. – 320 c.
8. Василин, Н.Я. Беспилотные летательные аппараты / Н.Я. Василин. – Минск : Попурри, 2017. – 272 с.
9. Использование беспилотных летательных аппаратов в сельском хозяйстве / Ю.Н. Зубарев [и др.] // Вестн. Перм. федер. исслед. центра. – 2019. – №2. – С. 47–51. https://doi.org/10.7242/2658-705X/2019.2.5
10. Terrestrial laser scanning of agricultural crops / J. Lumme [et al.] // The Intern. Arch. of the Photogrammetry, Remote Sensing a. Spatial Inform. Sciences. – 2008. – Vol. 37, pt. B5. – P. 563–566.
11. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley / J. Bendig [et al.] // Intern. J. of Appl. Earth Observation a. Geoinformation. – 2015. – Vol. 39. – P. 79–87. https://doi.org/10.1016/j.jag.2015.02.012
12. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging / J. Bendig [et al.] // Remote Sensing. – 2014. – Vol. 6, N 11. – P. 10395–10412. https://doi.org/10.3390/rs61110395
13. Bendig, J. UAV-based imaging for multi-temporal, very high-resolution crop surface models to monitor crop growth variability / J. Bendig, A. Bolten, G. Bareth // Photogrammetrie. Fernerkundung. Geoinformation. – 2013. – Vol. 6. – Р. 551– 562. https://doi.org/10.1127/1432-8364/2013/0200
14. Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat / M.A. Hassan [et al.] // Plant Methods. – 2019. – Vol. 15. – Art. 37. https://doi.org/10.1186/s13007-019-0419-7
15. Comparison of models in assessing relationship of corn yield with plant height measured during early- to midseason / X. Yin [et al.] // J. of Agr. Science. – 2011. – Vol. 3, N 3. – Р. 14–24. https://doi.org/10.5539/jas.v3n3p14
16. Mapping and monitoring of biomass and grazing in pasture with an unmanned aerial system / A. Michez [et al.] // Remote Sensing. – 2019. – Vol. 11, N 5. – Art. 473. https://doi.org/10.3390/rs11050473
17. Evaluation of RGB-based vegetation indices from UAV imagery to estimate forage yield in grassland / U. Lussem [et al.] // The Intern. Arch. of the Photogrammetry, Remote Sensing a. Spatial Inform. Sciences. – 2018. – Vol. XLII-3. – P. 1215–1219. https://doi.org/10.5194/isprs-archives-XLII-3-1215-2018
18. RGB vegetation indices applied to grass monitoring: a qualitative analysis / B.D. S. Barbosa [et al.] // Agronomy Research. – 2019. – Vol. 17, N 2. – P. 349–357. https://doi.org/10.15159/AR.19.119
19. Louhaichi, M. Spatially located platform and aerial photography for documentation of grazing impacts on wheat / M. Louhaichi, M.M. Borman, D.E. Johnson // Geocarto Intern. – 2001. – Vol. 16, №1. – P. 65–70. https://doi.org/10.1080/10106040108542184
20. A visible band index for remote sensing leaf chlorophyll content at the canopy scale / E.R. Hunt Jr. [et al.] // Intern. J. of Appl. Earth Observation a. Geoinformation. – 2013. – Vol. 21. – P. 103–112. doi.org/10.1016/j.jag.2012.07.020
21. Novel algorithms for remote estimation of vegetation fraction / A.A. Gitelson [et al.] // Remote Sensing of Environment. – 2002. – Vol. 80, N 1. – P. 76–87. https://doi.org/10.1016/s0034-4257(01)00289-9
22. Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation / C.J. Tucker // Remote Sensing of Environment. – 1979. – Vol. 8, N 2. – P. 127–150. https://doi.org/10.1016/0034-4257(79)90013-0
23. Color indexes for weed identification under various soil, residue, and lighting conditions / D.M. Woebbecke [et al.] // Trans. of the ASAE. – 1995. – Vol. 38, N 1. – Р. 259–269. https://doi.org/10.13031/2013.27838
24. Determination of vegetation cover index under different soil management systems of cover plants by using an unmanned aerial vehicle with an onboard digital photographic camera / A. Beniaich [et al.] // Semina: Ciências Agrárias. – 2019. – Vol. 40, N 1. – Р. 49–66. https://doi.org/10.5433/1679-0359.2019v40n1p49
25. Meyer, G.E. Verification of color vegetation indices for automated crop imaging applications / G.E. Meyer, J.C. Neto // Computers a. Electronics in Agriculture. – 2008. – Vol. 63, №2. – P. 282–293. https://doi.org/10.1016/j.compag.2008.03.009
26. Crop growth estimation system using machine vision / T. Kataoka [et al.] // Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), July 20 – July 24, 2003 / The Inst. of Electrical a. Electronics Engineers. – Kobe, 2003. – Vol. 2. – P. 1079–1083. https://doi.org/10.1109/aim.2003.1225492
27. Marchant, J.A. Shadow invariant classification for scenes illuminated by daylight / J.A. Marchant, C.M. Onyango // J. of the Optical Society of America. – 2000. – Vol. 17, N 11. – P. 1952–1961. https://doi.org/10.1364/josaa.17.001952
28. Hague, Т. Automated crop and weed monitoring in widely spaced cereals / Т. Hague, N.D. Tillett, H. Wheeler // Precision Agriculture. – 2006. – Vol. 7, N 1. – P. 21–32. https://doi.org/10.1007/s11119-005-6787-1
29. Automatic segmentation of relevant textures in agricultural images / M. Guijarro [et al.] // Computers a. Electronics in Agriculture. – 2011. – Vol. 75, N 1. – P. 75–83. https://doi.org/10.1016/j.compag.2010.09.013
30. Estimating the nitrogen status of crops using a digital camera / Y. Li [et al.] // Field Crops Research. – 2010. – Vol. 118, N 3. – P. 221–227. https://doi.org/10.1016/j.fcr.2010.05.011
31. Wheat growth monitoring and yield estimation based on multi-rotor unmanned aerial vehicle / Z. Fu [et al.] // Remote Sensing. – 2020. – Vol. 12, N 3. – Art. 508. https://doi.org/10.3390/rs12030508