О рациональной интерполяции функции |x|α по расширенной системе узлов Чебышева – Маркова

Ровба Е. А., Медведева В. Ю.
2019

 В работе исследуются приближения функции |x|α, α > 0 интерполяционными рациональными функциями Лагранжа на отрезке [–1,1]. В качестве узлов интерполирования выбираются нули четных рациональных функций Чебышева – Маркова и точка x = 0. Получено интегральное представление остатка интерполирования и оценка сверху рассматриваемых равномерных приближений. На их основании подробно изучаются:а) полиномиальный случай; здесь авторы приходят к известному асимптотическому равенству М. Н. Ганзбурга;б) в случае фиксированного числа геометрически различных полюсов получена оценка сверху соответствующих равномерных приближений, улучшающая известный результат К. Н. Лунгу;в) при приближении общими интерполяционными рациональными функциями Лагранжа найдена оценка равномерных приближений и показано, что на концах отрезка [–1,1] ее можно улучшить.Полученные результаты могут быть применены в теоретических исследованиях и численных методах. 

Ровба Е. А., Медведева В. Ю. О рациональной интерполяции функции |x|α по расширенной системе узлов Чебышева – Маркова. Известия Национальной академии наук Беларуси. Серия физико-математических наук. 2019;55(4):391-405. https://doi.org/10.29235/1561-2430-2019-55-4-391-405
Цитирование

Список литературы

Похожие публикации

Источник