ИНТЕРПОЛЯЦИОННЫЕ ФОРМУЛЫ ЭРМИТА – БИРКГОФА ОТНОСИТЕЛЬНО АЛГЕБРАИЧЕСКОЙ И ТРИГОНОМЕТРИЧЕСКОЙ СИСТЕМ ФУНКЦИЙ С ОДНИМ СПЕЦИАЛЬНЫМ УЗЛОМ

Худяков А. П., Трофимук А. А.
2017

Данная статья посвящена задаче построения и исследования обобщенных интерполяционных формул Эрмита – Биркгофа. Для функций скалярного аргумента построены алгебраический и тригонометрический интерполяционные многочлены Эрмита – Биркгофа, содержащие значение дифференциального оператора специального вида в одном из узлов. Порядок дифференциального оператора не зависит от числа узлов. Найдены классы многочленов, для которых интерполяционные формулы точны. Построен тригонометрический аналог формулы Лейбница. Получены представления и оценки погрешности интерполирования. Приведен иллюстрационный пример применения формулы тригонометрического интерполирования. Полученные результаты могут быть использованы в теоретических исследованиях как основа построения методов приближения линейных операторов, а также приближенных методов решения некоторых нелинейных операторных уравнений, которые встречаются в нелинейной динамике, математической физике. 

Худяков А. П., Трофимук А. А. ИНТЕРПОЛЯЦИОННЫЕ ФОРМУЛЫ ЭРМИТА – БИРКГОФА ОТНОСИТЕЛЬНО АЛГЕБРАИЧЕСКОЙ И ТРИГОНОМЕТРИЧЕСКОЙ СИСТЕМ ФУНКЦИЙ С ОДНИМ СПЕЦИАЛЬНЫМ УЗЛОМ. Известия Национальной академии наук Беларуси. Серия физико-математических наук. 2017;(1):14-28.
Цитирование

Список литературы

Похожие публикации