RT - article SR - Electronic T1 - ИНТЕРПОЛЯЦИОННЫЕ ФОРМУЛЫ ЭРМИТА – БИРКГОФА ОТНОСИТЕЛЬНО АЛГЕБРАИЧЕСКОЙ И ТРИГОНОМЕТРИЧЕСКОЙ СИСТЕМ ФУНКЦИЙ С ОДНИМ СПЕЦИАЛЬНЫМ УЗЛОМ JF - Известия Национальной академии наук Беларуси. Серия физико-математических наук SP - 2017-04-30 A1 - Худяков А. П., A1 - Трофимук А. А., YR - 2017 UL - https://www.academjournals.by/publication/12957 AB - Данная статья посвящена задаче построения и исследования обобщенных интерполяционных формул Эрмита – Биркгофа. Для функций скалярного аргумента построены алгебраический и тригонометрический интерполяционные многочлены Эрмита – Биркгофа, содержащие значение дифференциального оператора специального вида в одном из узлов. Порядок дифференциального оператора не зависит от числа узлов. Найдены классы многочленов, для которых интерполяционные формулы точны. Построен тригонометрический аналог формулы Лейбница. Получены представления и оценки погрешности интерполирования. Приведен иллюстрационный пример применения формулы тригонометрического интерполирования. Полученные результаты могут быть использованы в теоретических исследованиях как основа построения методов приближения линейных операторов, а также приближенных методов решения некоторых нелинейных операторных уравнений, которые встречаются в нелинейной динамике, математической физике.