Ismail N. F. , Lee K. Y. , Hadis N. S. M. , Ismail L. N. , Rahim A. F. A. , Abdullah M. H. , Radzol A. R. M. Субстраты для спектроскопии гигантского комбинационного рассеяния на основе покрытого наночастицами серебра пористого кремния для обнаружения низкой концентрации белка денге NS1. Журнал прикладной спектроскопии. 2024;91(2):321.
1. World Health Organization, Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New edition, World Health Organization, WHO/HTM/NTD/DEN/2009.1 (2009).
2. K. L. Anders, N. M. Nguyet, N. T. H. Quyen, T. V. Ngoc, T. V. Tram, T. T. Gan, et al., Am. J. Trop. Medicine and Hygiene, 87, No. 1, 165–170 (2012).
3. Machado, Maria Barbério, Gabriel Rios, Danyelle Oliveira, T. M. Silva, S. M. Buzalaf, Marília Costa, S. V. Silva, M. S. Arago, V. D. Siqueira, Walter, Detection of Dengue Virus Infection NS1 Antigen Using Human Saliva (2012).
4. C. V. Raman, Nature, 121, No. 3051, 619 (1928), https://doi.org/10.1038/121619b0.
5. X. Guo, D. Wang, R. Khan, Mater. Chem. Phys., art. 123291, 252 (2020), doi: 10.1016/j.matchemphys.2020.123291.
6. D. Kim, J. Kim, J. Henzie, Y. Ko, H. Lim, G. Kwon, J. Na, H.-J. Kim, Y. Yamauchi, J. You, Chem. Eng. J., 419, art. 129445 (2021), doi: 10.1016/j.cej.2021.129445.
7. Y. Ma, J. Ma, Y. Zhang, Z. Zhao, C. Gu, D. Chen, J. Zhou, T. Jiang, J. Alloys and Compd., 918, art. 165706 (2022), doi: 10.1016/j.jallcom.2022.165706. 321-9
8. Y. Li, C. Lin, Y. Peng, J. He, Y. Yang, Sens. Actuat. B: Chem., 365, art. 131974 (2022), doi: 10.1016/j.snb.2022.131974.
9. G. Fan, X. Li, S. Xu, C. Dai, Q. Xue, H. Wang, Talanta, 235, art. 122814 (2021), doi: 10.1016/j.talanta.2021.122814.
10. C. Qiu, Z. Cheng, C. Lv, R. Wang, F. Yu, Chin. Chem. Lett., 32, No. 8, 2369–2379 (2021).
11. M. Moskovits, J. Chem. Phys., 69, No. 9, 4159–4161 (1978), doi: 10.1063/1.437095.
12. P. A. Mosier-Boss, Nanomaterials, 7, No. 6, art. 142 (2017), doi: 10.3390/nano7060142.
13. J. Krajczewski, R. Ambroziak, A. Kudelski, Nanomaterials, 11, No. 1, art. 75, 1–25 (2021), doi: 10.3390/nano1101007.
14. L. Yang, M. Gong, X. Jiang, D. Yin, X. Qin, B. Zhao, W. Ruan, J. Raman Spectrosc., 46, No. 3, 287–292 (2015), doi: 10.1002/jrs.4645.
15. T. L. Williamson, X. Guo, A. Zukoski, A. Sood, D. J. Díaz, P. W. Bohn, J. Phys. Chem. B, 109, No. 43, 20186–20191 (2005), doi: 10.1021/jp0534939.
16. W. Song, X. Han, L. Chen, Y. Yang, B. Tang, W. Ji, W. Ruan, W. Xu, B. Zhao, Y. Ozaki, J. Raman Spectrosc., 41, No. 9, 907–913 (2010), doi: 10.1002/jrs.2539.
17. A. G. Cullis, L. T. Canham, P. D. J. Calcott, J. Appl. Phys., 82, No. 3, 909–965 (1997), doi: 10.1063/1.366536.
18. S. P. Low, N. H. Voelcker, Handbook of Porous Silicon, Second ed., 1-2, 533–545 (2018), doi: 10.1007/978-3-319-71381-6_38.
19. Q. Shabir, Handbook of Porous Silicon, 395–401 (2014), doi: 10.1007/978-3-319-05744-6_39.
20. X. Yue, X. Zheng, G. Lv, J. Mo, X. Yu, J. Liu, Z. Jia, X. Lv, J. Tang, Optik, 192, art. 162959 (2019), doi: 10.1016/j.ijleo.2019.162959.
21. N. R. Nirala, J. Asiku, H. Dvir, G. Shtenberg, Talanta, 239, art. 123087 (2022), doi: 10.1016/j.talanta.2021.123087.
22. V.-T. Vo, V.-D. Phung, S.-W. Lee, Surfaces and Interfaces, 25, art. 101181 (2021), doi: 10.1016/j.surfin.2021.101181.
23. K. Girel, E. Yantcevich, G. Arzumanyan, N. Doroshkevich, H. Bandarenka, Phys. Status Solidi (a), 213, No. 11, 2911–2915 (2016).
24. D. Muthukumar, G. Shtenberg, Talanta, 254, 124132 (2023).
25. N. F. Ismail, A. R. M. Radzol, A. Z. Zulhanip, L. N. Ismail, N. S. Mohamad Hadis, K. Y. Lee, Proceedings – 2020 IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES 2020, art. 9398818, 147–151 (2021), doi: 10.1109/IECBES48179.2021.9398818.
26. A. Zaher, P. Hafliger, F. Puppo, G. De Micheli, S. Carrara, IEEE 2014 Biomedical Circuits and Systems Conference, BioCAS 2014 – Proceedings, art. 6981759, 448–451 (2014), doi: 10.1109/BioCAS.2014.6981759.
27. S. Carrara, D. Sacchetto, M.-A. Doucey, C. Baj-Rossi, G. De Micheli, Y. Leblebici, Sens. and Actuat. B: Chem., 171-172, 449–457 (2012), doi: 10.1016/j.snb.2012.04.089.
28. N. F. Ismail, K. Y. Lee, L. N. Ismail, A. A. Rahim, N. M. Hadis, A. R. M. Radzol, In 2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), IEEE, 78–83, doi: 10.1109/IECBES54088.2022.10079329.
29. R. S. Dariani, Z. Ahmadi, Optik, 124, No. 22, 5353–5356 (2013).
30. R. B. Andreev, Ya. S. Bobovich, A. V. Bortkevich, V. D. Volosov, M. Ya. Tsenter, J. Appl. Spectrosc., 25, No. 2, 1013–1015 (1976), doi: 10.1007/BF00624296.
31. X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, Y. F. Lu, Nanotechnology, 23, No. 20, art. 205702 (2012), doi: 10.1088/0957-4484/23/20/205702.
32. L. Liu, S. Hou, X. Zhao, C. Liu, Z. Li, C. Li, S. Xu, G. Wang, J. Yu, C. Zhang, B. Man, Nanomaterials, 10, No. 12, art. 2371, 1–16 (2020), doi: 10.3390/nano10122371.
33. P. Hildebrandt, M. Stockhurger, J. Phys. Chem., 88, No. 24, 5935–5944 (1984), doi: 10.1021/j150668a038.
34. Z. Movasaghi, S. Rehman, I. U. Rehman, Appl. Spectrosc. Rev., 42, No. 5, 493–541 (2007), doi: 10.1080/05704920701551530.
35. R. P. Kengne-Momo, P. Daniel, F. Lagarde, Y. L. Jeyachandran, J. F. Pilard, M. J. Durand-Thouand, G. Thouand, Int. J. Spectrosc., 2012 (2012).
36. A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, M. Baranska, J. Raman Spectrosc., 44, No. 8, 1061–1076 (2013).
37. F. Adar, Spectroscopy, 37, No. 2, 9–12, 25 (2022).