Wu W. , Li B. , Xiang X. , Zu X. Влияние температуры на видимую фотолюминесценцию термически отожженных нанокристаллических пленок PbSe. Журнал прикладной спектроскопии. 2023;90(2):350-1 - 350-7.
1. A. Namekawa, R. Katoh, Chem. Phys. Lett., 659, 154–158 (2016).
2. V. Arivazhagan, M. M. Parvathi, S. Rajesh, Vacuum, 99, 95–98 (2014).
3. L. Zhang, Y. Zhang, S. V. Kershaw, et al., Nanotechnology, 25, 105704 (2014).
4. T. Tohidi, K. Jamshidi-Ghaleh, Appl. Phys. A, 118, 1247–1258 (2015).
5. J. P. Heremans, V. Jovovic, E. S. Toberer, et al., Science, 321, 554–557 (2008).
6. H. Zogg, S. Blunier, T. Hoshino, et al., IEEE Trans Electron Devices, 38, 1110–1117 (1991).
7. 7. F. W. Wise, Acc. Chem. Res., 33, 773–780 (2000).
8. W. L. Ma, J. M. Luther, H. M. Zheng, et al., Nano Lett., 9, 1699–1703 (2009).
9. Y. Liu, M. Gibbs, J. Puthussery, et al., Nano Lett., 10, 1960–1969 (2010).
10. W. R. Feng, X. Y. Wang, H. Zhou, et al., Vacuum, 109, 108–111 (2014).
11. F. G. Hone, F. B. Dejene, J. Mater. Sci. Mater. Electron., 28, 5979–5989 (2017).
12. M. Bouroushian, Z. Loizos, N. Spyrellis, et al., Thin Solid Films, 229, 101–106 (1993).
13. L. M. Peter, R. L. Wang, Electrochem. Commun., 1, 554–558 (1999).
14. S. P. Zimin, I. I. Amirov, V. V. Naumov, Semiconductors, 50, 1125–1129 (2016).
15. R. P. Sugavaneshwar, T. D. Dao, T. Yokoyama, et al., Radiation Effects and Defects in Solids, 173, 112–117 (2018).
16. L. P. Biro, R. M. Candea, G. Borodi, et al., Thin Solid Films, 165, 303–315 (1988).
17. M. C. Torquemada, M. T. Rodrigo, G. Vergara, et al., J. Appl. Phys., 93, 1778–1784 (2003).
18. V. Kasiyan, Z. Dashevsky, C. M. Schwarz, et al., J. Appl. Phys., 112, 086101 (2012).
19. P. Kumar, M. Pfeffer, E. Schweda, et al., J. Alloys Compd., 724, 316–326 (2017).
20. S. Ganguly, S. Yoo, J. Electron. Mater., 48, 6169–6175 (2019).
21. L. N. Maskaeva, V. M. Yurk, V. F. Markov, et al., Semiconductors, 54, 1191–1197 (2020).
22. S. Y. Yan, Q. Yang, S. L. Feng, et al., J. Electron. Mater., 49, 4929–4935 (2020).
23. P. Kumar, M. Pfeffer, C. Berthold, et al., J. Alloys Compd., 735, 1654–1661 (2018).
24. F. Zhao, S. Mukherjee, J. Ma, et al., Appl. Phys. Lett., 92, 211110 (2008).
25. D. W. Ma, C. Cheng, Y. N. Zhang, et al., Opt. Mater., 37, 834–839 (2014).
26. W. Wu, Y. L. Tang, B. Li, et al., Opt. Mater., 118, 111233 (2021).
27. W. E. Mahmoud, Polym. Adv. Technol., 22, 2550–2555 (2011).
28. M. R. A. Bhuiyan, M. A. A. Azad, S. M. F. Hasan, Indian J. Pure. Appl. Phys., 49, 180–185 (2011).
29. G. K. Williamson, R. E. Smallman, Philos. Mag., 1, 34–46 (1956).
30. J. I. Langford, A. J. C. Wilson, J. Appl. Cryst., 11, 102–113 (1978).
31. T. H. Gfroerer, In: Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd. (2006), https://doi.org/10.1002/9780470027318.a2510
32. N. Mythili, K. T. Arulmozhi, Int. J. Sci. Eng. Res., 5, 412–416 (2014).
33. R. Yousefi, A. K. Zak, F. Jamali-Sheini, et al., Ceram. Int., 40, 11699–11703 (2014).
34. C. Gautier, M. Cambon-Muller, M. Averous, Appl. Surf. Sci., 141, 157–163 (1999).
35. C. Cai, S. B. Han, X. T. Zhang, et al., RSC Adv., 12, 6205–6213 (2022).
36. X. G. Sun, K. W. Gao, X. L. Pang, et al., Appl. Surf. Sci., 356, 978–985 (2015).
37. V. V. Tomaev, L. L. Makarov, P. A. Tikhonov, et al., Glass Phys. Chem., 30, 349–355 (2004).