Aghamirzaei М. , Khiabani M. S., Hamishehkar H. , Mokarram R. R., Amjadi M. Обнаружение β-лактамных антибиотиков на основе конъюгированных антител с наностержнями золота с помощью спектрометра локализованного поверхностного плазмонного резонанса. Журнал прикладной спектроскопии. 2022;89(2):291.
1. V. Tamošiūnas, A. Padarauskas, Chromatographia, 67, 783–788 (2008), https://doi.org/10.1365/s10337-008-0579-5.
2. T. Śniegocki, A. Posyniak, J. Żmudzki, Bull. Vet. Inst. Pulawy., 51, 59–64 (2007).
3. W. B. Shim, J. S. Kim, M. G. Kim, D. H. Chung, J. Food Sci., 78, 1575–1581 (2013).
4. N. V. Gasilova, S. A. Eremin, J. Anal. Chem., 65, 255–259 (2010), https://doi.org/10.1134/s1061934810030081.
5. F. Conzuelo, M. Gamella, S. Campuzano, D. G. Pinacho, A. J. Reviejo, M. P. Marco, J. M. Pingarrón, Biosens. Bioelectron., 36, 81–88 (2012), https://doi.org/10.1016/j.bios.2012.03.044.
6. E. Kazemi, S. Dadfarnia, A. Mohammad, H. Shabani, M. R. Fattahi, J. Khodaveisi, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 187, 30–35 (2017), https://doi.org/10.1016/j.saa.2017.06.023.
7. N. Bi, M. Hu, H. Zhu, H. Qi, Y. Tian, H. Zhang, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 107, 24–30 (2013), https://doi.org/10.1016/j.saa.2013.01.014.
8. M. Aghamirzaei, M. Sowti Khiabani, H. Hamishehkar, R. Rezaei Mokaram, M. Amjadi, J. Appl. Spectrosc., 88, 174–184 (2021).
9. P. Cyganowski, D. Jermakowicz-bartkowiak, P. Jamroz, P. Pohl, A. Dzimitrowicz, Coll. Surfase A, 582, 123886 (2019), https://doi.org/10.1016/j.colsurfa.2019.123886.
10. K. Hamaguchi, H. Kawasaki, R. Arakawa, Coll. Surfase A: Physicochem. Eng. Aspects, 367, 167–173 (2010), https://doi.org/10.1016/j.colsurfa.2010.07.006.
11. Y. Huang, K. Ma, K. Kang, M. Zhao, Z. Zhang, Y. Liu, Coll. Surfaces A: Physicochem. Eng. Aspects, 421, 101–108 (2013), https://doi.org/10.1016/j.colsurfa.2012.12.050.
12. X. Li, L. Jiang, Q. Zhan, J. Qian, S. He, Colloids Surf. A: Physicochem. Eng. Aspects, 332, 172–179 (2009), https://doi.org/10.1016/j.colsurfa.2008.09.009.
13. S. Golmohammadi, M. Etemadi, J. Appl. Spectrosc., 86, 925 (2019), https://doi.org/10.1007/s10812-019-00917-y.
14. C. Karami, A. Alizadeh, M. A. Taher, Z. Hamidi, B. Bahrami, J. Appl. Spectrosc., 83, 687–693 (2016), https://doi.org/10.1007/s10812-016-0349-3.
15. G.P. Sahoo, H. Bar, D.K. Bhui, P. Sarkar, S. Samanta, S. Pyne, S. Ash, A. Misra, Coll. Surfase A: Physicochem. Eng. Aspects, 375, 30–34 (2011), https://doi.org/10.1016/j.colsurfa.2010.11.033.
16. M. Singh, I. Sinha, A. K. Singh, R. K. Mandal, Coll. Surfase A: Physicochem. Eng. Aspects, 384, 668–674 (2011), https://doi.org/10.1016/j.colsurfa.2011.05.037.
17. P. Vaccarello, L. Tran, J. Meinen, C. Kwon, Y. Abate, Y. Shon, Coll. Surfase A: Physicochem. Eng. Aspects, 402, 146–151 (2012), https://doi.org/10.1016/j.colsurfa.2012.03.041.
18. Y. Yang, Q. Cui, Q. Cao, L. Li, Coll. Surfase A: Physicochem. Eng. Aspects, 503, 28–33 (2016), https://doi.org/10.1016/j.colsurfa.2016.05.026.
19. J. Ye, K. Bonroy, F. Frederix, J. D. Haen, G. Maes, G. Borghs, Coll. Surfase A: Physicochem. Eng. Aspects, 321, 313–317 (2008), https://doi.org/10.1016/j.colsurfa.2008.01.028.
20. K. S. McKeating, M. Couture, M. P. Dinel, S. Garneau-Tsodikova, J. F. Masson, Analyst, 141, 5120–5126 (2016), https://doi.org/10.1039/c6an00540c.
21. L. Chen, Z. Wang, M. Ferreri, J. Su, B. Han, J. Agric. Food Chem., 57, 4674–4679 (2009). https://doi.org/10.1021/jf900433d.
22. A. Singh, M. Sharma, A. Batra, J. Optoelectron. Biomed. Mater, 5, 27–32 (2013).
23. C. George, I. Sergiel, A. Dzimitrowicz, P. Jamro, T. Kozlecki, P. Pohl, Arab. J. Chem., 12, No. 8 (2016), https://doi.org/10.1016/j.arabjc.2016.04.004.
24. J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen, Nanotechnology, 80, 285–290 (2007), https://doi.org/10.1088/0957-4484/18/10/105104.
25. J. M. B. Res, G. Oza, S. Pandey, A. Gupta, R. Kesarkar, M. Sharon, W. Ambernath, J. Microbiol. Biotechnol., 2, 511–515 (2012).
26. C. Zhou, X. Zhang, X. Huang, X. Guo, Q. Cai, S. Zhu, Sensors (Switzerland), 14, 21872–21888 (2014), https://doi.org/10.3390/s141121872.
27. A. Aljabali, Y. Akkam, M. Al Zoubi, K. Al-Batayneh, B. Al-Trad, O. Abo Alrob, A. Alkilany, M. Benamara, D. Evans, Nanomaterials, 8, 1–15 (2018), https://doi.org/10.3390/nano8030174.
28. H. Mohammadi, M. Hafezi, S. Hesaraki, M. M. Sepantafar, Nanomed. J., 2, 217–222 (2015), https://doi.org/10.7508/nmj.
29. N. T. Ndeh, S. Maensiri, D. Maensiri, Adv. Nat. Sci. Nanosci. Nanotechnol., 8, aa724a (2017), https://doi.org/10.1088/2043-6254/aa724a.
30. S. Goldmeier, K. De Angelis, K. R. Casali, C. Vilodre, F. Consolim-Colombo, A. B. Klein, R. Plentz, P. Spritzer, M. C. Irigoyen, Am. J. Transl. Res., 6, 91–101 (2014), https://doi.org/10.1016/j.saa.2011.02.051.
31. S. A. Aromal, V. K. Vidhu, D. Philip, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 85, 99–104 (2012), https://doi.org/10.1016/j.saa.2011.09.035.
32. G. M. Corp, C. Astro, G. M. C. Safari, Environ. Sci. Technol., 37, 3458–3466 (2003).
33. H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, H. Weller, Langmuir, 21, 1931–1936 (2005), https://doi.org/10.1021/la0477183.
34. H. Zhang, W. Li, Z. Sheng, H. Han, Q. He, Analyst, 135, 1680–1685 (2010). https://doi.org/10.1039/c0an00025f.
35. X. Wang, Z. Mei, Y. Wang, L. Tang, Talanta, 136, 1–8 (2017).