Wang Z. , Li X. , Lin H. , Yang D. , Wang Y. , Lu S. , Xiao B. ВЫСОКОЭФФЕКТИВНЫЙ ПЕРЕСТРАИВАЕМЫЙ СЕНСОР ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ НА ОСНОВЕ ВЫСОКОКАЧЕСТВЕННОГО ГРАФЕНА. Журнал прикладной спектроскопии. 2022;89(5):719-725.
1. F. H. L. Koppens, D. E. Chang, G. D. A. F. Javier, Nano Lett., 11, No. 8, 3370 (2011).
2. A. S. Rodin, Z. Fei, A. S. Mcleod, et al., Physics (2016).
3. L. Ju, B. Geng, J. Horng, et al., Nature Nanotech., 6, No. 10, 630 (2011).
4. D. B. Farmer, D. Rodrigo, T. Low, et al., Nano Lett., 15, No. 4, 2582–2587 (2015).
5. P. Li, T. Wang, H. Böckmann, et al., Nano Lett., 14, No. 8, 4400 (2014).
6. B. Vasić, G. Isić, R. Gajić, J. Appl. Phys., 113, No. 1, 21556 (2013).
7. Y. Li, H. Yan, D. B. Farmer, et al. Nano Lett., 14, No. 3, 1573 (2014).
8. W. Wei, J. Nong, Y. Zhu, et al., Opt. Commun. (2016).
9. J. N. Anker, W. P. Hall, O. Lyandres, et al., Nanosci. Technol.: A Collection Rev. from Nature J., 308–319 (2010).
10. L. A. Falkovsky, Phys. Usp., 51, No. 9, 887–897 (2008).
11. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer Science & Business Media (2007).
12. V. G. Kravets, R. Jalil, Y. J. Kim, et al., Sci. Reports, 4, 5517 (2014).
13. O. Salihoglu, S. Balci, C. Kocabas, Appl. Phys. Lett., 100, No. 21, 213110 (2012).
14. P. R. Griffiths, J. A. D. Haseth, Fourier Transform Infrared Spectrometry, 2nd Ed., Proteomics (2007).
15. D. Rodrigo, O. Limaj, D. Janner, et al., Mid-Infrared Plasmonic Biosensing with Graphene. Science, 349 (6244), 165–168 (2015).
16. J. Homola, S. S. Yee, G. Gauglitz, Sens. Actuat. B: Chem., 54, No. 1–2, 3–15 (1999).
17. S. Law, V. Podolskiy, D. Wasserman, Nanophotonics, 2, No. 2, 103–130 (2013).
18. J. M. Bingham, J. N. Anker, L. E. Kreno, et al., J. Am. Chem. Soc., 132, No. 49, 17358–17359 (2010).
19. M. W. Sigrist, R. Bartlome, D. Marinov, et al., Appl. Phys. B, 90, No. 2, 289–300 (2008).
20. X. Yan, T. Wang, X. Han, et al., Plasmonics, 1–7 (2016).
21. T. Wenger, G. Viola, J. Kinaret, et al., Materials, 4, No. 2 (2017).
22. R. E. Peale, J. W. Cleary, W. R. Buchwald, et al., Proc. SPIE, The Int. Soc. Opt. Eng., 767306 (95), 730–734 (2010).
23. B. Wang, G. P. Wang, Appl. Phys. Lett., 87, No. 1, 013107(1–3) (2005).
24. L. A. Falkovsky, J. Exp. Theor. Phys., 106, No. 3, 575–580 (2008).
25. B. Ruan, Q. You, J. Zhu, et al., IEEE Sensors J., 18, 7436–7441 (2018).
26. D. Wu, J. Tian, L. Li, et al., Opt. Commun., 412, 41–48 (2018).
27. G. W. Hanson, J. Appl. Phys., 103, No. 6, 064302 (2008).
28. A. Moreau, C. Ciracì, et al., Nature, 492(7427), 86–89 (2012).
29. B. Zhu, G. Ren, S. Zheng, et al., Opt. Express, 21, No. 14, 17089–17096 (2013).
30. X. Wang, T. He, M. A. Mohammad, et al., Nat. Commun., 6, Article No. 7767 (2015).
31. D. Yadav, S. B. Tombet, T. Watanabe, et al., Materials, 3, No. 4, 045009 (2016).
32. X. Binggang, T. Shengjun, A. Fyffe, Z. Shi, Opt. Express, 28, 4048–4057 (2020).
33. Y. Zhang, M. Cui, J. Electron. Mater., 48, No. 2, 1005–1010 (2019).