Aghamirzaei M. , Khiabani M. S., Hamishehkar H. , Mokarram R. R., Amjadi M. ПЛАЗМОННЫЙ СЕНСОР ДЛЯ ОБНАРУЖЕНИЯ β-ЛАКТАМНЫХ АНТИБИОТИКОВ НА ОСНОВЕ КОНЪЮГИРОВАННОГО АНТИТЕЛА С НАНОЧАСТИЦАМИ ЗОЛОТА. Журнал прикладной спектроскопии. 2021;88(1):174(1)-174(10).
1. V. Tamošiūnas, A. Padarauskas, Chromatographia, 67, 783–788 (2008), https://doi.org/10.1365/s10337-008-0579-5.
2. T. Śniegocki, A. Posyniak, J. Żmudzki, Bull. Vet. Inst. Pulawy, 51, 59–64 (2007).
3. W. B. Shim, J. S. Kim, M. G. Kim, D. H. Chung, J. Food Sci., 78, 1575–1581 (2013).
4. N. V. Gasilova, S. A. Eremin, J. Anal. Chem., 65, 255–259 (2010), https://doi.org/10.1134/s1061934810030081.
5. F. Conzuelo, M. Gamella, S. Campuzano, D. G. Pinacho, A. J. Reviejo, M. P. Marco, J. M. Pingarrón, Biosens. Bioelectron., 36, 81–88 (2012), https://doi.org/10.1016/j.bios.2012.03.044.
6. E. Kazemi, S. Dadfarnia, A. Mohammad, H. Shabani, M. R. Fattahi, J. Khodaveisi, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 187, 30–35 (2017), https://doi.org/10.1016/j.saa.2017.06.023.
7. N. Bi, M. Hu, H. Zhu, H. Qi, Y. Tian, H. Zhang, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 107, 24–30 (2013), https://doi.org/10.1016/j.saa.2013.01.014.
8. P. Cyganowski, D. Jermakowicz-Bartkowiak, P. Jamroz, P. Pohl, A. Dzimitrowicz, Colloids Surf. A, 582, 123886 (2019), https://doi.org/10.1016/j.colsurfa.2019.123886.
9. K. Hamaguchi, H. Kawasaki, R. Arakawa, Colloids Surf. A, Physicochem. Eng. Asp., 367, 167–173 (2010), https://doi.org/10.1016/j.colsurfa.2010.07.006.
10. Y. Huang, K. Ma, K. Kang, M. Zhao, Z. Zhang, Y. Liu, Colloids Surf. A, Physicochem. Eng. Asp., 421, 101–108 (2013), https://doi.org/10.1016/j.colsurfa.2012.12.050.
11. X. Li, L. Jiang, Q. Zhan, J. Qian, S. He, Colloids Surf. A, Physicochem. Eng. Asp., 332, 172–179 (2009), https://doi.org/10.1016/j.colsurfa.2008.09.009.
12. S. Golmohammadi, M. Etemadi, J. Appl. Spectrosc., 86, 925 (2019), https://doi.org/10.1007/s10812-019-00917-y.
13. C. Karami, A. Alizadeh, M. A. Taher, Z. Hamidi, B. Bahrami, J. Appl. Spectrosc., 83, 687–693 (2016), https://doi.org/10.1007/s10812-016-0349-3
14. G. P. Sahoo, H. Bar, D. K. Bhui, P. Sarkar, S. Samanta, S. Pyne, S. Ash, A. Misra, Colloids Surf. A, Physicochem. Eng. Asp., 375, 30–34 (2011), https://doi.org/10.1016/j.colsurfa.2010.11.033.
15. M. Singh, I. Sinha, A. K. Singh, R. K. Mandal, Colloids Surf. A, Physicochem. Eng. Asp., 384, 668–674 (2011), https://doi.org/10.1016/j.colsurfa.2011.05.037.
16. P. Vaccarello, L. Tran, J. Meinen, C. Kwon, Y. Abate, Y. Shon, Colloids Surf. A, Physicochem. Eng. Asp., 402, 146–151 (2012), https://doi.org/10.1016/j.colsurfa.2012.03.041.
17. Y. Yang, Q. Cui, Q. Cao, L. Li, Colloids Surf. A, Physicochem. Eng. Asp., 503, 28–33 (2016), https://doi.org/10.1016/j.colsurfa.2016.05.026.
18. J. Ye, K. Bonroy, F. Frederix, J. D. Haen, G. Maes, G. Borghs, Colloids Surf. A, Physicochem. Eng. Asp., 321, 313–317 (2008), https://doi.org/10.1016/j.colsurfa.2008.01.028.
19. K. S. McKeating, M. Couture, M. P. Dinel, S. Garneau-Tsodikova, J. F. Masson, Analyst., 141, 5120–5126 (2016), https://doi.org/10.1039/c6an00540c.
20. L. Chen, Z. Wang, M. Ferreri, J. Su, B. Han, J. Agric. Food Chem., 57, 4674–4679 (2009), https://doi.org/10.1021/jf900433d.
21. A. Singh, M. Sharma, A. Batra, J. Optoelectron. Biomed. Mater., 5, 27–32 (2013).
22. C. George, I. Sergiel, A. Dzimitrowicz, P. Jamro, T. Kozlecki, P. Pohl, Preparation and characterization of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants and the effect of follow-up treatment with atmospheric pressure glow microdischarge (2016), https://doi.org/10.1016/j.arabjc.2016.04.004.
23. J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen, Nanotechnology, 80, 285–290 (2007), https://doi.org/10.1088/0957-4484/18/10/105104.
24. J. M. B. Res, G. Oza, S. Pandey, A. Gupta, R. Kesarkar, M. Sharon, W. Ambernath, J. Microbiol. Biotechnol., 2, 511–515 (2012).
25. C. Zhou, X. Zhang, X. Huang, X. Guo, Q. Cai, S. Zhu, Sensors (Switzerland), 14, 21872–21888 (2014), https://doi.org/10.3390/s141121872.
26. A. Aljabali, Y. Akkam, M. Al Zoubi, K. Al-Batayneh, B. Al-Trad, O. Abo Alrob, A. Alkilany, M. Benamara, D. Evans, Nanomaterials, 8, 1–15 (2018). https://doi.org/10.3390/nano8030174.
27. H. Mohammadi, M. Hafezi, S. Hesaraki, M. M. Sepantafar, Nanomed. J., 2, 217–222 (2015), https://doi.org/10.7508/nmj.
28. N. T. Ndeh, S. Maensiri, D. Maensiri, Adv. Nat. Sci. Nanosci. Nanotechnol., 8, aa724a (2017), https://doi.org/10.1088/2043-6254/aa724a.
29. S. Goldmeier, K. De Angelis, K. R. Casali, C. Vilodre, F. Consolim-Colombo, A. B. Klein, R. Plentz, P. Spritzer, M. C. Irigoyen, Am. J. Transl. Res., 6, 91–101 (2014), https://doi.org/10.1016/j.saa.2011.02.051.
30. S. A. Aromal, V. K. Vidhu, D. Philip, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 85, 99–104 (2012), https://doi.org/10.1016/j.saa.2011.09.035.
31. G. M. Corp, C. Astro, G. M. C. Safari, Environ. Sci. Technol., 37, 3458–3466 (2003).
32. H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, H. Weller, Langmuir, 21, 1931–1936 (2005), https://doi.org/10.1021/la0477183.
33. D. K. Singh, R. Jagannathan, P. Khandelwal, P. M. Abraham, P. Poddar, Nanoscale, 5, 1882–1893 (2013), https://doi.org/10.1039/c2nr33776b.
34. C. N. R. Rao, A. K. Cheetham, J. Mater. Chem., 11, 2887–2894 (2001), https://doi.org/10.1039/b105058n.
35. L. Liu, Y. Chen, S. Song, Q. Zheng, X. Wu, H. Kuang, Food Agric. Immunol., 28, 1283–1292 (2017), https://doi.org/10.1080/09540105.2017.1337084.
36. H. Zhang, W. Li, Z. Sheng, H. Han, Q. He, Analyst, 135, 1680–1685 (2010), https://doi.org/10.1039/c0an00025f.
37. Ch. Wang, J. Liu, X. Han, Ch. Liu, Y. Tian, N. Lhou, Analyt. Methods (2017), https://doi.org/10.1039/C7AY01685A.