Разработка генеративной состязательной нейронной сети для идентификации потенциальных ингибиторов ВИЧ-1 методами глубокого обучения

Николаев Г. И., Шульдов Н. А., Анищенко А. И., Тузиков А. В., Андрианов А. М.
2020

Методами глубокого обучения разработан генеративный состязательный автоэнкодер для рационального дизайна потенциальных ингибиторов проникновения ВИЧ-1, способных блокировать участок белка gp120 оболочки вируса, критический для его связывания с клеточным рецептором CD4. Были выполнены исследования, включающие создание архитектуры автоэнкодера, формирование молекулярной библиотеки потенциальных лигандов белка gp120 ВИЧ-1 для обучения нейронной сети, молекулярный докинг лигандов с белком gp120 и расчет свободной энергии связывания, генерацию молекулярных дескрипторов химических соединений обучающего набора данных, обучение нейронной сети, оценку результатов обучения и работы автоэнкодера.  Рассмотрены результаты тестирования автоэнкодера на широком наборе соединений из молекулярной библиотеки ZINC. Показано, что совместное использование нейронной сети с виртуальным скринингом баз данных химических соединений формирует продуктивную платформу для идентификации базовых структур, перспективных для создания новых противовирусных препаратов, ингибирующих ранние стадии развития ВИЧ-инфекции.

Николаев Г. И., Шульдов Н. А., Анищенко А. И., Тузиков А. В., Андрианов А. М. Разработка генеративной состязательной нейронной сети для идентификации потенциальных ингибиторов ВИЧ-1 методами глубокого обучения. Информатика. 2020;17(1):7-17. https://doi.org/10.37661/1816-0301-2020-17-1-7-17
Цитирование

Список литературы

Похожие публикации

Источник