1. Songen H., Bechstein R., Kuhnle A. Quantitative atomic force microscopy. Journal of Physics: Condensed Matter, 2017, vol. 29, no. 27, pp. 274001-1–17. https://doi.org/10.1088/1361-648X/aa6f8b
2. Garcia R., San Paulo A. Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Physical Review B, 1999, vol. 60, no. 7, pp. 4961–4967. https://doi.org/10.1103/PhysRevB.60.4961
3. Stark M., Stark R. W., Heckl W. M., Guckenberger R. Inverting dynamic force microscopy: From signals to time-resolved interaction forces. The Proceedings of the National Academy of Sciences (PNAS), 2002, vol. 99, no. 13, pp. 8473–8478. https://doi.org/10.1073/pnas.122040599
4. Lee S. I., Howell S. W., Raman A., Reifenberger R. Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment. Physical Review B, 2002, vol. 66, pp. 115409-1–10. https://doi.org/10.1103/PhysRevB.66.115409
5. Lee S. I., Howell S. W., Raman A., Reifenberger R. Nonlinear dynamic perspectives on dynamic force microscopy. Ultramicroscopy, 2003, vol. 97, no. 1/4, 25 p. https://doi.org/10.1016/s0304-3991(03)00043-3
6. Hu Sh., Raman A. Analytical formulas and scaling laws for peak interaction forces in dynamic atomic force microscopy. Applied Physics Letters, 2007, vol. 91, pp. 123106-1–3. https://doi.org/10.1063/1.2783226
7. Kiracofe D., Melcher J., Raman A. Gaining insight into the physics of dynamic atomic force microscopy in complex environments using the VEDA simulator. Review of Scientific Instruments, 2012, vol. 83, no. 1, pp. 013702-1–17. https://doi.org/10.1063/1.3669638
8. Guzman H. V., Garcia P. D., Garcia R. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments. Beilstein Journal of Nanotechnology, 2015, vol. 6, pp. 369–379. https://doi.org/10.3762/bjnano.6.36
9. Wagner T. Steady-state and transient behavior in dynamic atomic force microscopy. Journal of Applied Physics, 2019, vol. 125, no. 4, pp. 044301-1–13. https://doi.org/10.1063/1.5078954
10. Bahrami M. R. Dynamic analysis of atomic force microscope in tapping mode. Vibroengineering Procedia, 2020, vol. 32, 7 p. https://doi.org/10.21595/vp.2020.21488
11. Chandrashekar A., Belardinelli P., Lenci S., Staufer U., Alijani F. Mode coupling in dynamic atomic force microscopy. Physical Rewiew Applied, 2021, vol. 15, no. 2, pp. 024013-1–11. https://doi.org/10.1103/PhysRevApplied.15.024013
12. Melcher J., Hu Sh., Raman A. Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy. Rewiew of Scientific Instruments, 2008, vol. 79, no. 6, pp. 061301-1–11. https://doi.org/10.1063/1.2938864
13. Thorén P.-A., Borgani R., Forchheimer D., Dobryden I., Claesson P. M., Kassa H. G., Leclère Ph. [et al.]. Modeling and measuring viscoelasticity with dynamic atomic force microscopy. Physical Rewiew Applied, 2018, vol. 10, no. 2, pp. 024017-1–13. https://doi.org/10.1103/PhysRevApplied.10.024017
14. Keyvani A., Tamer M. S., Wingerden J.-W. van, Goosen J. F. L., Keulen F. van. A comprehensive model for transient behavior of tapping mode atomic force microscope. Nonlinear Dynamics, 2019, vol. 97, pp. 1601–1617. https://doi.org/10.1007/s11071-019-05079-2
15. Farokh Payam A., Morelli A., Lemoine P. Multiparametric analytical quantification of materials at nanoscale in tapping force microscopy. Applied Surface Science, 2021, vol. 536, pp. 147698-1–15. https://doi.org/10.1016/j.apsusc.2020.147698
16. Johnson K. L. Contact Mechanics. Cambridge University Press, 1987. 452 p.
17. Abetkovskaia S. О., Chizhik S. А. Dynamic force spectroscopy of «soft» materials. Teplo- i massoperenos – 2007: sbornik nauchnykh trudov [Heat and Mass Transfer – 2007: Scientific Papers]. Minsk, A. V. Luikov Institute of Heat and Mass Transfer of the National Academy of Sciences of Belarus, 2007, pp. 323–330 (in Russian).
18. Garcia R., Gómez C. J., Martinez N. F., Patil S., Dietz C., Magerle R. Identification of nanoscale dissipation processes by dynamic atomic force microscopy. Physical Rewiew Letters, 2006, vol. 97, no. 1, pp. 016103-1–4. https://doi.org/10.1103/PhysRevLett.97.016103