De novo дизайн потенциальных ингибиторов основной протеазы коронавируса SARS-CoV-2 с помощью технологий искусственного интеллекта и молекулярного моделирования

Андрианов А. М., Фурс К. В., Шульдов Н. А., Тузиков А. В.
2023

С помощью генеративной нейронной сети глубокого обучения, разработанной ранее на основе технологий искусственного интеллекта, осуществлен de novo дизайн 95 775 потенциальных лигандов основной протеазы (Mpro) SARS-CoV-2, играющей важную роль в процессе репликации вируса. Методами молекулярного докинга и молекулярной динамики выполнена оценка аффинности связывания этих молекул с каталитическим сайтом фермента. В результате проведенных исследований отобраны 7 соединений-лидеров, которые характеризуются низкими значениями свободной энергии Гиббса, сопоставимыми с величинами, полученными с помощью идентичного вычислительного протокола для двух мощных нековалентных ингибиторов Mpro SARS-CoV-2, использованных в расчетах в качестве позитивного контроля. Полученные результаты свидетельствуют о перспективности использования идентифицированных соединений в работах по созданию новых противовирусных препаратов, терапевтическое действие которых основано на ингибировании каталитической активности Mpro SARS-CoV-2.

Андрианов А. М., Фурс К. В., Шульдов Н. А., Тузиков А. В. De novo дизайн потенциальных ингибиторов основной протеазы коронавируса SARS-CoV-2 с помощью технологий искусственного интеллекта и молекулярного моделирования. Доклады Национальной академии наук Беларуси. 2023;67(3):197-206. https://doi.org/10.29235/1561-8323-2023-67-3-197-206
Цитирование

Список литературы

Похожие публикации

Источник