1. The application of in vitro-derived human neurons in neurodegenerative disease modeling / G. X. D’Souza [et al.] // J. Neurosci. Res. – 2021. – Vol. 99, N 1. – P. 124–140. https://doi.org/10.1002/jnr.24615
2. Pacitti, D. Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling / D. Pacitti, R. Privolizzi, B. E. Bax // Front. Cell. Neurosci. – 2019. – Vol. 13. https://doi.org/10.3389/fncel.2019.00129
3. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering / S. Mobini [et al.] // Biomaterials. – 2019. – Vol. 198. – P. 146–166. https://doi.org/10.1016/j.biomaterials.2018.05.012
4. A rapid and accurate method to quantify neurite outgrowth from cell and tissue cultures: Two image analytic approaches using adaptive thresholds or machine learning / A. Ossinger [et al.] // J. Neurosci. Methods. – 2020. – Vol. 331. – Art. 108522. https://doi.org/10.1016/j.jneumeth.2019.108522
5. NeuriTES. Monitoring neurite changes through transfer entropy and semantic segmentation in bright-field time-lapse microscopy / A. Mencattini [et al.] // Patterns. – 2021. – Vol. 2, N 6. – Art. 100261. https://doi.org/10.1016/j.patter.2021.100261
6. U-Net and its Variants for Medical Image Segmentation: A Review of Theory and Applications / N. Siddique [et al.] // IEEE Access. – 2021. – Vol. 9. – P. 82031–82057. https://doi.org/10.1109/access.2021.3086020
7. Facci, L. Culture of rodent cortical and hippocampal neurons / L. Facci, S. D. Skaper // Neurotrophic Factors. – 2012. – Vol. 846. – P. 49–56. https://doi.org/10.1007/978-1-61779-536-7_5
8. Reza, A. M. Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement / A. M. Reza // J. VLSI Signal Process. Syst. Signal Image Video Technol. – 2004. – Vol. 38, N 1. – P. 35–44. https://doi.org/10.1023/b:vlsi.0000028532.53893.82
9. MEDIAR: Harmony of Data-Centric and Model-Centric for Multi-Modality Microscopy / G. Lee [et al.] // arXiv:2212.03465. – 2022. https://doi.org/10.48550/arXiv.2212.03465
10. Rother, C. “GrabCut”: interactive foreground extraction using iterated graph cuts / C. Rother, V. Kolmogorov, A. Blake // ACM Trans. Graph. – 2004. – Vol. 23, N 3. – P. 309–314. https://doi.org/10.1145/1015706.1015720
11. SNT: a unifying toolbox for quantification of neuronal anatomy / C. Arshadi [et al.] // Nat. Methods. – 2021. – Vol. 18, N 4. – P. 374–377. https://doi.org/10.1038/s41592-021-01105-7
12. Sholl analysis: a quantitative comparison of semi-automated methods / K. E. Binley [et al.] // J. Neurosci. Methods. – 2014. – Vol. 225. – P. 65–70. https://doi.org/10.1016/j.jneumeth.2014.01.017
13. Stukel, J. M. The interplay of peptide affinity and scaffold stiffness on neuronal differentiation of neural stem cells / J. M. Stukel, R. K. Willits // Biomed. Mater. – 2018. – Vol. 13, N 2. – Art. 024102. https://doi.org/10.1088/1748-605x/aa9a4b
14. Human brain organoid-on-a-chip to model prenatal nicotine exposure / Y. Wang [et al.] // Lab Chip. – 2018. – Vol. 18, N 6. – P. 851–860. https://doi.org/10.1039/c7lc01084b
15. Costamagna, G. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids / G. Costamagna, G. P. Comi, S. Corti // Int. J. Mol. Sci. – 2021. – Vol. 22, N 5. – Art. 2659. https://doi.org/10.3390/ijms22052659